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EXECUTIVE SUMMARY 

The goal of the Critical Resilient Interdependent Infrastructure Systems and Processes (CRISP) 

collaborative research project is to address the fundamental challenge of the vulnerability of 

smart city infrastructure. CRISP is pursuing a coordinated and interdisciplinary approach that 

relies on machine learning, operations research, behavioral economics, and cognitive psychology 

to lay the mathematical foundations of resilient smart cities. The anticipated results will break 

new ground in the understanding of synergies between cyber-physical infrastructure and resilient 

resource management, thus catalyzing the global deployment of smart cities. 

The current study was an extension of the overall CRISP project and was conducted on the 

Virginia Smart Roads Highway section. This is a 2.2-mile controlled-access test track owned by 

the Virginia Department of Transportation and operated by the Virginia Tech Transportation 

Institute. The test vehicle that was used by the participant was an Infiniti Q50 that was retrofitted 

with additional hardware (e.g., differential Global Positioning System) to allow the vehicle the 

ability to operate under automated conditions. 

The design for this study consisted of a between-subjects experimental design. The primary 

independent variable was the between-subjects factor “operating condition” that dictated the 

method of driving control through two levels: manual operation or automated operation. 

Participants in the manual condition controlled the test vehicle using standard vehicle controls 

(i.e., steering wheel and pedals). Participants in the automation condition had the automated 

driving features of the test vehicle activated for them, which then controlled the vehicle. Thirty-

two participants were randomly binned into one of these driving control conditions. The 

experimental implementation involved a sudden lane deviation that all participants experienced. 

This lane deviation happened at the end of the experiment using inconspicuous controls operated 

by the experimenters in the backseat of the test vehicle. Participants also completed four 

secondary tasks during the study using a mounted tablet: perform a calculation, type an email, 

find an address, and find a movie playing at a specific time in a local theatre.  

Results suggested that participants in the automated condition had slower corrective steering 

reaction times than those in the manual condition. This could be explained by the participants in 

the automated condition not having their hands on the wheel, requiring them to cover a longer 

distance to reach the wheel. In contrast, those in the manual condition already had their hands on 

the wheel, meaning that the sudden lane deviation would be perceived and reacted to faster. 

All participants used the steering wheel as corrective input after the lane deviation. Only one-

third of participants (N = 11) reacted by applying the brake. Analyses showed that braking or not 

braking was not influenced by the operating condition. 

Limitations of the current study include minimal exposure to the automated driving features that 

could hinder the trust participants had in the test vehicle and their subsequent reaction times. 

Additionally, the presence of researchers in the test vehicle could have put undue stress on the 

participant during trials. While this study provides some initial guidance, future research using 

naturalistic methods that incorporate longitudinal study designs to alleviate these limitations may 

provide additional insight. 
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CHAPTER 1. INTRODUCTION 

Realizing the vision of truly smart cities is one of the most pressing technical challenges of the 

coming decade (Saad, 2017). The success of this vision requires synergistic integration of cyber-

physical critical infrastructures (CIs) such as smart transportation, wireless systems, water 

networks, and power grids into a unified smart city. Smart city CIs have significant 

interdependence, sharing resources such as energy, computation, wireless spectrum, users and 

personnel, and economic investments. As such, they are prone to correlated failures occurring 

due to day-to-day operations, natural disasters, or malicious attacks. Protecting tomorrow’s smart 

cities from such failures requires resiliency in the processes that manage common CI resources. 

These processes must be able to adaptively and optimally reallocate resources to recover from 

failure. 

Smart cities are the future of major metropolitan areas. They can be described as the synergistic 

integration of cyber-physical CI (e.g., automated driving systems [ADSs], electric grid; Saad, 

2017). Each CI modality has the potential for failure due to adverse events, such as equipment 

malfunction or human error but also if individual failures are not contained or extreme events, 

such as natural disasters, power outages, or cyberattacks, are not prepared for. Having resiliency 

across modalities is paramount to ensure that a weak link does not act as a potential target or 

unnecessary danger (Brown, Carlyle, Salmeron, & Wood, 2005).  

ADSs are a smart city modality that will have a high degree of interaction with residents and will 

interface with a number of other CI modalities. With such a high level of human interaction, they 

could become a target for technological attacks intended to cause motor vehicle crashes and loss 

of life. Because other CI modalities may rely on data shared from ADSs, technological attacks 

on these vehicles have the potential to propagate failures into other components of the system 

(e.g., smart infrastructure).  

The goal of the Critical Resilient Interdependent Infrastructure Systems and Processes (CRISP) 

collaborative research project is to address this fundamental challenge. CRISP is pursuing a 

coordinated and interdisciplinary approach that relies on machine learning, operations research, 

behavioral economics, and cognitive psychology to lay the mathematical foundations of resilient 

smart cities. The anticipated results will break new ground in the understanding of synergies 

between multiple cyber-physical infrastructure and resilient resource management, thus helping 

to move forward the global deployment of smart cities. 

The current study examined the effects of a simulated  hacking of a vehicle (i.e., vehicle forced 

to run off-road) on participant reactions in a vehicle operated either manually or under automated 

conditions. The following chapters explain the method for the current study, provide results of 

the experiment, and discuss how these results inform the overall CRISP effort. 
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CHAPTER 2. METHODOLOGY 

2.1 TEST TRACK 

Testing took place on the Virginia Smart Roads, highway test bed, which is a 2.2-mile long 

controlled-access test track (see Figure 1). The sudden lane deviation event (i.e., lateral steering 

input) took place at a location where there is additional paved space to the right of the normal 

lane (see Figure 2; red arrows indicate path of sudden lane deviation). 

 

Figure 1. Map of Virginia Smart Road with extended shoulder marked. 

 

Figure 2. Extended shoulder for lane deviation. 
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2.2 VEHICLES 

Two vehicles were used for this experiment: an Infiniti M35 and an Infiniti Q50. The M35 was 

used as the lead confederate vehicle that simulated ambient traffic, and the Q50 (Figure 3) as the 

test vehicle that participants used. 

 

Figure 3. Test vehicle (Infiniti Q50). 

2.3 VEHICLE INSTRUMENTATION 

The M35 (lead confederate vehicle) did not require any instrumentation for this experiment. 

The Q50 (test vehicle) used a combination of manufacturer original equipment and retrofitted 

systems.  The retrofitted features included the automated control features, data collection, and 

redundant manual operated steering controls in the backseat. The test vehicle came equipped 

with a camera aligned behind the rearview mirror that allowed lateral control of the vehicle 

through lane line identification. A differential Global Positioning System (DGPS; Figure 4) was 

also used to control the longitudinal and lateral movement of the test vehicle during automation 

(further discussion of automated driving features in section 2.3.1). 

 

Figure 4. In-vehicle DGPS unit. 
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In addition to the longitudinal and lateral automated driving features, the experimenter had 

access to manual operated steering controls in the backseat (see Figure 5) to engage and 

disengage these features. With the safety key turned to the “on” position, automation was 

engaged using the green “Resume” button and disengaged with the red “Cancel” button. The 

“Master Kill” button turned off all power to the automated driving features in case of a safety-

critical event (i.e., loss of vehicle control). 

 

Figure 5. Automation control box. 

A human-machine interface (HMI) showed when automation was active by displaying a green 

“A” (see Figure 6; note, the “System Active” text and “System NOT Active” text were added to 

the figure for clarity in this report but were not actually present in the HMI display). In addition, 

an auditory alert consisting of a power-up noise and message stating “automated control 

engaging” was played when the automation was activated. When the automation was turned off, 

the green “A” was cleared from the display and a power-down noise followed by a message 

stating “automated control disengaging” was used to alert the participant of the change in system 

status 

 

Figure 6. HMI for participant vehicle. 

For data collection, the test vehicle was instrumented with the Virginia Tech Transportation 

Institute’s (VTTI’s) data acquisition system (DAS; see Figure 7), which collects a wide range of  

data. Various inputs to the flex-DAS include an inertial measurement unit,, and six camera 



5 

 

streams (front view, rear view, over the shoulder, feet, face, and backseat; see Figure 8). The test 

vehicle was also retrofitted with an SMS radar mounted on the front bumper.  

 

Figure 7. VTTI DAS. 

 

 

Figure 8. Vehicle camera instrumentation (researchers shown). 

To initiate the sudden lane deviation, experimenters had access to redundant steering controls 

located in the backseat of the test vehicle (see Figure 9). In addition to the steering wheel, a 

brake lever was also available for use in a potential safety-critical events (e.g., wildlife, loss of 

vehicle control, participant not reacting). 
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Figure 9. Redundant steering controls. 

2.3.1 Automated Lateral and Longitudinal Control Features Summary 

The test vehicle had standard advanced driver assistance system (ADAS) features that control 

various aspects of the dynamic driving task (DDT). Longitudinal movement could be controlled 

by the adaptive cruise control (ACC) and lateral control by lane keeping with the forward-facing 

camera positioned behind the rear-view mirror. Applying SAE (2018) definitions to these 

features categorizes them as level 1 when operated separately and level 2 under simultaneous 

operation. 

For the purposes of this experiment, the standard features were not capable of maneuvering 

around the turnarounds found at each end of the test track. For this reason, the test vehicle was 

retrofitted with DGPS to help maneuver these turnarounds. During testing, it was determined that 

the standard camera system would maintain the test vehicle’s lane position on the straightaways, 

then transition to following DGPS waypoints through the turnarounds. These systems were used 

in conjunction with other retrofitted systems (e.g., programmed brake/acceleration pedal input) 

that controlled the acceleration and deceleration of the vehicle. 

An automated feature orientation video shown to participants told them that they were 

responsible for monitoring the system for safety by responding to requests to intervene (RTIs; 

i.e., an automation disengaged message) and that they did not need to have their hands or feet 

actively controlling the test vehicle. The video explained that the automated driving features 

controlled both the test vehicle’s longitudinal and lateral movement.  

In fact, the test vehicle was not equipped with the hardware needed to perform some of these 

tasks. Instead, these were actually performed by the rear seat safety driver and lead confederate 

vehicle driver. The test vehicle, when automation was engaged, essentially operated on a 

recording that VTTI’s hardware team developed. That is, the test vehicle would run the test track 
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loop the same way each session (e.g., accelerating/decelerating in the same locations at the same 

velocity). This was useful for keeping automation exposure consistent across participants, but 

posed some setbacks. Although this arrangement managed the longitudinal and lateral control of 

the test vehicle, it was not dynamic in its action. That is, if a vehicle, object, or animal moved in 

front of the test vehicle, it would not detect it or slow down and would continue running the 

recording that had been programmed. To give the illusion that the automated driving features 

were as capable as described, the 3-second gap between the test vehicle and lead confederate 

vehicle was managed by the lead confederate vehicle driver, not the test vehicle. Object event 

detection and response (OEDR) was performed by the rear seat safety driver, who had access to 

redundant steering and braking controls and could react if necessary. 

For these reasons, the test vehicle, from the participant’s perspective, could be defined as 

operating with SAE level 3 driving automation systems where lateral and longitudinal control 

were performed by sensors and OEDR was performed inconspicuously by the rear seat safety 

driver. 

2.4 EXPERIMENTAL DESIGN 

This study was designed to replicate an external hacking of the test vehicle that would cause it to 

run off-the-road independent of input from the driver. This study was performed using a 

between-subjects design. All participants completed one driving session where they experienced 

the sudden lane deviation. During the drive, participants also completed four secondary tasks 

(e.g., Web browsing, email; tasks explained in the following section). 

2.4.1 Independent Variable 

This research design included one independent variable: 

Operating condition – The test vehicle had the ability to operate in automation with level 

3 driving automation systems and to operate manually. If participants where in the 

automated condition, they were shown a video detailing the longitudinal and lateral 

control features. Once the automation was activated, participants were reminded that they 

did not need to have their hands or feet active while driving.  

2.4.2 Dependent Variables 

This research design included six dependent variables: 

Task (1,2,3,4) Completion Time (in seconds) – This was defined as the total time the 

participant took to complete the given tablet tasks. A separate variable also indicated 

whether the task was successfully completed. 

Steering Initial Reaction (in seconds) – This was defined as the difference in time 

between when the participant started to reach for the steering wheel (i.e., lifting hand 

towards the wheel) and when the sudden lane deviation was initiated. 
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Steering Corrective Reaction (in seconds) – This was defined as the difference in time 

between the participant providing corrective input to the steering wheel (i.e., steering 

toward roadway) and when the sudden lane deviation was initiated. 

Braking Initial Reaction (in seconds) – This was defined as the difference in time 

between when the participant started to move a foot toward the brake pedal and when the 

sudden lane deviation was initiated. 

Braking Corrective Reaction (in seconds) – This was defined as the difference in time 

between the participant providing corrective input to the brake pedal (i.e., maximum 

pressure on the pedal) and when the sudden lane deviation was initiated. 

Swerve Distance (in meters) - This is the distance that the vehicle swerved during the 

lane deviation. This was calculated by taking the difference between the maximum 

deviation from the Smart Road centerline (lane deviation) and the participant’s baseline 

lane position (average lane position from previous laps).   

2.5 PROCEDURE 

2.5.1 Participants 

Participants were recruited through social media advertisements, email, and phone calls 

throughout Southwestern Virginia by VTTI’s recruitment group. Thirty-two participants met the 

inclusion criteria for this study (i.e., 18 years of age or older, held a U.S. driver’s license for 2 or 

more years, had not previously participated in a deception study). Participants were equally 

distributed across the gender (16 male; 16 female) and age group ranges (i.e., 18–32; 33–49; 50–

65; 66–80; 8 participants in each; Mage= 49.72; SDage = 17.21) recommended by the National 

Highway Traffic Safety Administration (NHTSA; NHTSA, 2013). Fifty-six percent had previous 

experience with crash warning systems (e.g., forward collision warning), 47% with knowledge of 

automated driving features (e.g., Tesla), 41% with longitudinal control features such as ACC, 

and 37% with lane assist that aid with the lateral control. 

2.5.2 Testing Method  

Participants were taken through the intake process (i.e., paperwork, vision/hearing check) once 

they arrived at VTTI. An experimenter then escorted the participant to the test vehicle in the 

VTTI parking lot. The experimenter oriented the participant to the standard features of the test 

vehicle (e.g., seat, mirror, steering wheel adjustment) and ensured that their seatbelt was 

fastened. In the test vehicle, the experimenter and a rear seat safety driver sat in the backseat. 

The rear seat safety driver had access to a set of redundant steering and braking controls (see 

Figure 9) to act as a fallback-ready user in the event of any emergency situation (e.g., loss of 

vehicle control, wildlife). These controls were not in sight and were not explained to the 

participant. 

If the participant had been assigned to the automated condition, a video was played on a tablet 

explaining the automated driving features and capabilities. They were also told that they did not 

need to have their hands or feet engaged when automation was activated. After questions were 

answered, the participant was instructed to drive to the highway section of the Smart Roads. The 
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test track portion was split equally into four orientation legs and four test legs. Note, one leg is 

defined as a one-way trip from one end of the highway to the other (i.e., two legs equal one full 

loop). 

2.5.2.1 Orientation Legs 

Each orientation lap introduced a new element of the study to allow the participant to become 

comfortable before actual testing: 

Leg 1 – Maintain speed of 45 mph. 

Leg 2 – Introduce lead confederate vehicle.  

Leg 3 – Maintain 3-second following distance between participant and confederate 

vehicle (automation was activated if applicable). 

Leg 4 – Open the Web browser on the mounted tablet. 

2.5.2.2 Test Legs 

During the test portion, the participant was instructed to stay in the right lane for the duration of 

the drive, and perform four secondary, non-driving tasks. The participant was randomly assigned 

to either the automated or manual operating condition. In the manual condition, participants were 

in full control of the vehicle using traditional controls (e.g., steering wheel, brake pedal). In the 

automated condition, the automated driving features were engaged, and the participant was 

instructed to monitor the vehicle and be prepared to take control if the automated driving features 

disengaged. A summary of testing procedures is as follows: 

Leg 5 – Perform a calculation. 

Leg 6 – Type an email. 

Leg 7 – Find an address.  

Leg 8 – Surprise event – Find a local movie playing at a specific time; during this task, 

the rear seat safety driver initiated the sudden lane deviation using the redundant 

steering controls (see Figure 9). This sudden lane deviation was initiated at the 

start of the extended shoulder (see Figure 2) and, during piloting, was determined 

to be performed at .6 lateral gs. 

 2.5.3 Debriefing 

After completion of the surprise event, the experimenter instructed the participant to stop the 

vehicle and then proceeded with the debriefing process (i.e., revealing the true purpose of the 

study, signing an informed consent form). The participant, upon returning to VTTI, was then 

asked to complete a questionnaire. After filling out the questionnaire, the participant was then 

paid $60 for full participation.  
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CHAPTER 3. RESULTS 

3.1 Data Reduction 

The variables of interest were reduced and consolidated in 32 data files. These data files will be 

delivered on an encrypted hard drive containing a spreadsheet with human factor variable 

outputs and variable definitions. Video channels (i.e., over-the-shoulder and front view) will also 

be provided, with the participant’s face masked in each. Kinematic radar data will be provided in 

32 CSV files containing each participant’s data (further discussed in section 3.1.3), in addition to 

time-to-collision (TTC) and headway plots. 

3.1.1 Human Factor Variables 

Human factor variables (i.e., reaction time, task completion time) were calculated by matching 

video timestamps to the beginning and end of specific participant actions. Viewing the video, 

researchers used the definitions of the variables to mark the appropriate segments of these 

actions. These actions ranged in movement; for example,  lifting a hand to reach for the steering 

wheel or completing the end of a secondary task. See Figure 10 for a visual of the human factors 

data reduction method. 

 

Figure 10. Human factors data reduction method. 

3.1.2 GPS-based Calculations 

The DGPS system available on the Smart Road allows data to be collected that is much more 

precise than standard GPS systems. The DGPS data include latitude and longitude values 

accurate to about 1–3 cm as opposed to the 2–3 m accuracy of GPS. These DGPS data points 

were plotted and compared to the centerline data for the Smart Road to determine how much a 

participant swerved during the lane deviation. The DGPS points starting at leg one until leg 4 

(excluding the turnarounds) were used to calculate the average baseline lane position. Figure 11 

provides a visual overlay of the DGPS calculations for one participant (the vehicle displayed in 

the image is not from this study). The test vehicle location is marked in blue while the Smart 

Road’s highway centerline is in yellow, with the errant blue line onto the extended shoulder 

representing the lane deviation. There are blue lines on either side of the centerline as both 

directions of travel were used to calculate the average baseline lane position. 
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To determine the amount a participant swerved, the difference between the maximum deviation 

from the centerline and the participant’s average baseline lane position in the right lane was used. 

For eight participants in this dataset, the average location error (i.e., DGPS accuracy error) 

during the surprise event was over 1.00 m. Excluding the data from those eight participants, the 

average location error was 0.05 m for the surprise event.   

 
 

Figure 11. Centerline-to-baseline DGPS comparison and swerve mapping illustration. 

3.1.3 Radar Kinematic Data 

Radar, data extraction, and processing consisted of three steps: 1) epoch definition, 2) data 

extraction and variable calculation, and 3) validation.   

Epoch definition and identification was carried out using the timestamps gathered through video 

reduction. The exported epochs are 20 s in length and are centered around the EventStart 

timestamp. The EventStart timestamp is the time associated with onset of the lane departure 

event. This time window was selected as it was suitable to capture the participant’s response to 

the event, as well as the pre-event baseline driving.  

The time series data for each participant’s event were exported to individual CSV files. The full 

list of exported variables, as well as their descriptions can be found in Table 1. In addition to the 

measured time series variables, TTC and headway were computed from the measured radar data.  

The equations used to compute these were: 

𝑡𝑇𝑇𝐶 = −
𝑥𝑟𝑎𝑛𝑔𝑒

𝑣𝑙𝑒𝑎𝑑 − 𝑣ℎ𝑜𝑠𝑡
 

Equation 1: TTC Calculation 

𝑡𝐻𝑒𝑎𝑑𝑤𝑎𝑦 =
𝑥𝑟𝑎𝑛𝑔𝑒

𝑣ℎ𝑜𝑠𝑡
 

Equation 2: Headway Calculation 
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Table 1. Exported Variable Names, Descriptions, and Units for Each Participant’s Lane Departure Event 

Variable Name Variable Description Units 

participant_id 

 

Participant ID  

file_id 

 

Original File ID  

timestamp_ms 

 

Timestamp Milliseconds  

vehicle_speed_mps Host Vehicle Speed Meters per 

second 

accel_x_g 

 

Longitudinal Acceleration g 

accel_y_g 

 

Lateral Acceleration g 

accel_z_g 

 

Vertical Acceleration g 

brake_active 

 

Brake Activation Boolean  

steering_wheel_angle_deg 

 

Steering Wheel Angle Degrees 

throttle_position 

 

Throttle Position Percent 

x_range_to_lead_m 

 

Longitudinal Range to Lead Vehicle Meters 

y_range_to_lead_m 

 

Lateral Range to Lead Vehicle Meters 

x_velocity_to_lead_mps 

 

Longitudinal Velocity difference between Lead 

Vehicle Host (Radar) 

Meters per 

Second 

y_velocity_to_lead_mps Lateral Velocity difference between Lead Vehicle 

Host (Radar) 

Meters per 

Second 

headway_s 

 

Computed Time Headway (from radar) Seconds 

ttc_s Computed Time to Collision (from radar) Seconds 

 

Once the data were exported, two separate reviewers took the exported data and compared it 

against the original data and the forward video to ensure that the data provided are representative 

of the actual events.   
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3.2 DESCRIPTIVE STATISTICS 

Table 2 shows a summary of descriptive statistics for study variables.  

Table 2. Descriptive Statistics for Study Variables 

 Min Max M SD 

Age (years) 

 

18.00 75.00 49.72 17.21 

Task 1 Completion Time (s) 

 

24.94 103.90 56.03 24.53 

Task 2 Completion Time (s) 

 

23.05 104.36 57.24 24.53 

Task 3 Completion Time (s) 

 

31.46 108.50 95.74 15.91 

Steering Initial Reaction (Overall) (s) 

     Manual (s) 

     Automation (s) 

 

00.14 

00.14 

00.33 

 

00.67 

00.47 

00.67 

00.44 

00.35 

00.52 

00.14 

00.10 

00.11 

Steering Corrective Reaction (Overall) (s) 

     Manual (s) 

     Automation (s) 

 

00.54 

00.54 

00.53 

01.88 

00.94 

01.88 

00.83 

00.70 

00.96 

00.27 

00.10 

00.34 

Braking Initial Reaction (Overall) (s) 

     Manual (s) 

     Automation (s) 

 

00.41 

00.41 

00.44 

00.97 

00.88 

00.97 

00.65 

00.56 

00.73 

00.22 

00.09 

00.09 

Braking Corrective Reaction (Overall) (s) 

     Manual (s) 

     Automation (s) 

00.00 

00.75 

00.91 

01.54 

01.35 

01.54 

01.09 

00.95 

01.20 

00.55 

00.23 

00.21 

 

Swerve Distance (Overall) (meters) 

     Manual (m) 

     Automation (m) 

 

01.31 

01.31 

03.69 

 

07.90 

07.90 

07.23 

 

04.83 

04.17 

05.50 

 

01.60 

02.47 

02.90 
Note. Braking reaction times were calculated for the 11 participants who braked. Task 4 does not have a completion 

time as zero participants were able to complete that task.  

Table 3 shows a frequency summary of study variables, including data collected during the post-

drive questionnaire. This questionnaire asked general demographic questions (e.g., age, gender, 

education) in addition to previous driving experience with ADAS and automated driving 

features. 
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Table 3. Frequencies of Study Variables 

 Yes  No Total 

Task 1 Success Rate 

 

28 (87.5%) 4 (12.5%) 32 (100%) 

Task 2 Success Rate 

 

28 (87.5%) 4 (12.5%) 32 (100%) 

Task 3 Success Rate 

 

11 (34.4%) 21 (65.6%) 32 (100%) 

Task 4 Success Rate 

 

0 (0%) 32 (100%) 32 (100%) 

Crash Warning Systems 

 

18 (56.3) 14 (43.8%) 32 (100%) 

ACC 

 

13 (40.6%) 19 (59.4%) 32 (100%) 

Lane Assist 

 

12 (37.5%) 20 (62.5%) 32 (100%) 

Automation Knowledge 15 (46.9%) 17 (53.1%) 32 (100%) 
Note. Participants did not finish Task 4 (searching for local movie) as the sudden lane deviation was initiated 

seconds after this task was assigned. 

3.3 INFERENTIAL TESTS 

Select inferential tests were run on the study data to test mean differences between groups. An 

independent samples t-test was used to analyze mean steering corrective reaction time for the 

manual (M = 00.70; SD = 00.10) and automated operating conditions (M = 00.96; SD = 00.34). 

Results suggest that the automated condition participants had significantly slower corrective 

steering reaction times than manual participants, t(30) = −2.88, p = 0.007; d = 4.10 (see Figure 

12). 

An independent samples t-test was used to analyze mean corrective braking reaction time for the 

manual (M = 00.95; SD = 00.23) and automated conditions (M = 01.20; SD = 00.21). Results 

suggest that corrective braking reaction time did not differ as a function of operating condition, 

t(9) = −1.92, p = 0.09 (see Figure 13). The degrees of freedom for this test is lower as only 11 

out of 32 participants reacted to the sudden lane deviation, in part, by braking. 

To ensure that participant braking was not a function of operating condition, a chi-squared test of 

independence was conducted on braking (dummy coded as yes/no) and operating condition 

(manual/automation). Results showed that the distribution was almost equal (five participants 

braked in the manual condition; six braked in the automated condition) and that this distribution 

was not a function of operating condition, χ2(1) = 0.139, p = 0.71.  

Further, a two-by-two analysis of variance (ANOVA) was used to analyze if there was an 

interaction between gender (male/female) and operating condition (automated/manual) on 

corrective steering reaction times. However, the model was not significant, F(3, 28) = 2.60, p = 

0.07. 



15 

 

 

Figure 12. Corrective steering reaction between operating conditions. 

 

 

Figure 13. Corrective braking reaction between operating conditions. 
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CHAPTER 4. DISCUSSION 

A controlled-access test track study was conducted using the Virginia Smart Roads as the test 

bed. An Infiniti Q50 was used as the test vehicle and was retrofitted with hardware to allow the 

vehicle to operate under automated conditions. Further, this vehicle had inconspicuous redundant 

vehicle controls located in the backseat behind the passenger’s seat. These controls were used to 

initiate the sudden lane deviation experienced by each participant. 

This sudden lane deviation was intended to simulate an over-the-air hacking of the test vehicle 

that would cause it to suddenly exit the current lane of travel. Results suggested that participants 

in the automated condition had slower corrective steering reaction times than those in the manual 

condition. This could be explained by the participants in the automated condition not having 

their hands on the wheel, requiring them to cover a longer distance to reach the wheel and, for 

some participants, their eyes off the forward roadway. In contrast, those in the manual condition 

already had their hands on the wheel, meaning the sudden lane deviation would be perceived and 

reacted to faster. 

All participants used the steering wheel as corrective input after the lane deviation. However, 

only one-third of participants (N = 11) reacted by applying the brake. This could be explained by 

participants reacting to correct the movement error (i.e., the errant steering causing the lane 

deviation) by providing only the corrective input needed to address the error (Ericson, Parr, 

Beck, & Wolshon, 2017). Further, analyses showed that braking or not braking was not 

influenced by the operating condition. 

Although not relevant to hypothesis testing, participant performance on the given tasks varied. 

The secondary tasks were implemented to simulate non-driving tasks that are people are 

anticipated to engage in when operating a vehicle with an automated driving system. Most 

participants were successful in completing task 1, calculation (87.5%) and task 2, email (87.5%) 

but were largely unsuccessful with task 3, finding an address (34.4%) and task 4, finding a movie 

(0%; happened during the sudden lane deviation). This is due to the increasing complexity of 

each task, compounded with extraneous factors such as unfamiliarity with operating the specific 

tablet provided to participants. 

Limitations of the current study include participant exposure to the automated driving features of 

the test vehicle. Research suggests that significant driving time with automated driving features 

is needed to sufficiently build trust in the automated system (Hergeth, Lorenz, & Krems, 2017) 

beyond the approximately 30-minute drive time participants received. This could have 

influenced participant reactions by making them potentially hypervigilant due to unfamiliarity 

with the test vehicle and driving environment. A longitudinal study focusing on prolonged 

exposure and experience with the test vehicle could better represent the anticipated adaptation 

individuals have when using an automated driving feature long-term. 

Having two experimenters present in the test vehicle may have placed inadvertent stress on the 

participant in addition to the novelty of operating a new vehicle in a novel driving environment. 

Performing a naturalistic driving study where the participant is able to drive comfortably in an 

unaltered environment could provide better insight into their true driving behavior and reaction 

to a surprise event. 
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Regarding CI resiliency, the current study suggests that drivers are resilient and, generally, could 

react adequately and appropriately to an unexpected event (i.e., vehicle being hacked with an 

abrupt steering event). Previous research suggests that driver reaction time to familiar events 

(e.g., forward car braking) is 2-seconds, while reacting to an unfamiliar event (e.g., roadway 

collapsing) is 1.53 seconds (Coley, Wesley, Reed, & Parry, 2009). The current sample has an 

overall mean reaction time of 0.83 (steering) and 1.09 (braking), both faster than previous 

research. This suggests that if a CI modality, such as a vehicle, is hacked, a driver has the 

potential capability to react expediently. 

Overall, the current study examined driver reactions to a sudden lane deviation simulating a 

remote vehicle hacking. Corrective steering reaction times were slower in the automated than 

manual operating condition. Future studies may want to consider adding longitudinal and 

naturalistic driving elements to further add external validity to the context of the study 

environment.  
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